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Mapping: locate reads in reference 

http://en.wikipedia.org/wiki/File:Mapping_Reads.png 



Variant detection after mapping 

http://www.kenkraaijeveld.nl/genomics/bioinformatics/ 



Problem 1: 
Analysis is done after sequencing. 

Sequencing Analysis



Problem 2: 
Much of your data is unnecessary. 

Shotgun data is randomly sampled; 
So, you need high coverage for high sensitivity. 



Problem 3: 
Current variant calling approaches are multipass 

Mapping

Data

Sorting

Calling Answer



Problem 4: 
Allelic mapping bias favors reference genome. 
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Figure 2 The density of differentiating sites affects relative allelic abundance when simulated reads are mapped to only one genome.
Relative allelic abundance was measured using the 36-base (A-D) and 50-base (E-H) reads simulated from the two D. melanogaster genotypes as
well as using the 36-base reads simulated from D. melanogaster and D. simulans (I-L) aligned to a single reference genome, allowing either one
mismatch (A, E, I), two mismatches (B, F, J), or three mismatches (C, G, K), as well as by aligning reads to both allele-specific genomes allowing
no mismatches (D, H, L). The number of neighboring differentiating sites is shown on the x-axis of each panel for each differentiating site and
describes the maximum number of other sites that differ between the two alleles in any potential read overlapping the focal differentiating site.
The y-axis shows the proportion of reads that were assigned to the reference allele for each differentiating site, summarized in box plots where
the width of each box is proportional to the number of sites in that class. A proportion of 0.5 (indicated with a red dotted line in each panel) is
expected if all reads overlapping a differentiating site are correctly assigned to alleles. The pie chart inset in each panel shows the total number
of differentiating sites with equal (white) and unequal (grey) abundance of reads assigned to each allele.

Stevenson et al. BMC Genomics 2013, 14:536 Page 4 of 13
http://www.biomedcentral.com/1471-2164/14/536

Number of nbh differentiating polymorphisms. 

Stevenson et al., 2013 (BMC Genomics) 



Problem 5: 
Current approaches are often insensitive to indels 

Iqbal et al., Nat Gen 2012 



Why are we concerned at all!? 
Looking forward 5 years… 

Navin et al., 2011 



Some basic math: 
•  1000 single cells from a tumor… 
• …sequenced to 40x haploid coverage with Illumina… 
• …yields 120 Gbp each cell… 
• …or 120 Tbp of data. 

• HiSeq X10 can do the sequencing in ~3 weeks. 

•  The variant calling will require 2,000 CPU weeks… 

• …so, given ~2,000 computers, can do this all in one 
month. 



Similar math applies: 
• Pathogen detection in blood; 
• Environmental sequencing; 
• Sequencing rare DNA from circulating blood. 

•  Two issues: 

• Volume of data & compute 
infrastructure; 

• Latency for clinical applications. 



Can we improve this situation? 
•  Tie directly into machine as it generates sequence 

(Illumina, PacBio, and Nanopore can all do streaming, in theory) 

• Analyze data as it comes off; for some (many?) 
applications, can stop run early if signal detected. 

• Avoid using a reference genome for primary variant 
calling. 
•  Easier indel detection, less allelic mapping bias 
•  Can use reference for interpretation. 

Does such a magical approach exist!? 



~Digression: Digital normalization 
(a computational version of library normalization) 

Species A

Species B

Ratio 10:1
Unnecessary data

81%

Suppose you have 
a dilution factor of 
A (10) to B(1).  To 
get 10x of B you 
need to get 100x 
of A!  Overkill!! 

 
The high-coverage 
reads in sample A 
are unnecessary 

for assembly, and, 
in fact, distract. 
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Digital normalization 
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Some key points -- 
• Digital normalization is streaming. 

• Digital normalizing is computationally efficient (lower 
memory than other approaches; parallelizable/multicore; 
single-pass) 

• Currently, primarily used for prefiltering for assembly, but 
relies on underlying abstraction (De Bruijn graph) that is 
also used in variant calling. 



Assembly now scales with richness, not diversity. 

•  10-100 fold decrease in memory requirements 
•  10-100 fold speed up in analysis 



Diginorm is widely useful: 

1. Assembly of the H. contortus parasitic nematode 
genome, a “high polymorphism/variable coverage” problem. 
(Schwarz et al., 2013; pmid 23985341) 
 
2. Reference-free assembly of the lamprey (P. marinus) 
transcriptome, a “big assembly” problem.  (in prep) 

3. Osedax symbiont metagenome, a “contaminated 
metagenome” problem (Goffredi et al, 2013; pmid 
24225886)  
 



Anecdata: diginorm is used in Illumina 
long-read sequencing (?) 



Diginorm is “lossy compression” 
• Nearly perfect from an information theoretic perspective: 

•  Discards 95% more of data for genomes. 
•  Loses < 00.02% of information. 
 



True sequence (unknown)

Reads
(randomly sequenced)

X
X

X
X

X
X

X
X

X

X

X

Digital normalization => graph alignment 

What we are actually doing this stage 
is building a graph of all the reads, 

and aligning new reads to that graph. 



Error correction via graph alignment 

Jason Pell and Jordan Fish 



Error correction on simulated E. coli data 

1% error rate, 100x coverage. 

Jordan Fish and Jason Pell 

TP	   FP	   TN	   FN	  

ideal	   3,469,834	   99.1%	   8,186	   460,655,449	   31,731	   0.9%	  

1-‐pass	   2,827,839	   80.8%	   30,254	   460,633,381	   673,726	   19.2%	  

1.2-‐pass	   3,403,171	   97.2%	   8,764	   460,654,871	   98,394	   2.8%	  

(corrected)	   (mistakes)	   (OK)	   (missed)	  



Haplotype B (unk)

Reads
(randomly sequenced)

X
X

X

X

X
X

X
X

X

X
X

X

Haplotype A (unk)A
C

A

A

C
C
C

C

Single pass, reference free, tunable, streaming 
online variant calling. 

Error correction ó variant calling 



Coverage is adjusted to retain signal 



Graph alignment can detect read saturation 

Reads
(randomly sequenced)

X
X

X
X

We can do local analysis of saturated
graph components.

X

de Bruijn assembly
graph

X
X

transcript 1 transcript 2



Streaming with reads… 

Sequence...

Graph

Sequence...
Sequence...
Sequence...
Sequence...
Sequence...
Sequence...
Sequence...

....

Variants



Analysis is done after sequencing. 

Sequencing Analysis



Streaming with bases 

k bases...

Graph

k+1
k bases... k+1

k bases... k+1
k bases... k+1

k bases... k+1
k bases... k+1

k+2

...

Variants



Integrate sequencing and analysis 

Sequencing

Analysis

Are we done yet?



Streaming approach also supports more 
compute-intensive interludes – 
remapping, etc. 

Rimmer et al., 2014 



Streaming algorithms can be very efficient 

1-pass

Data

Answer

See also eXpress, Roberts et al., 2013. 



So: reference-free variant calling 
• Streaming & online algorithm; single pass. 

•  For real-time diagnostics, can be applied as bases are emitted from 
sequencer. 

• Reference free: independent of reference bias. 
• Coverage of variants is adaptively adjusted to retain all 

signal. 
• Parameters are easily tuned, although theory needs to be 

developed. 
•  High sensitivity (e.g. C=50 in 100x coverage) => poor compression 
•  Low sensitivity (C=20) => good compression. 

• Can “subtract” reference => novel structural variants. 
•  (See: Cortex, Zam Iqbal.) 



Two other features -- 

• More single-computer scalable approach than current: low 
disk access, high parallelizability. 

• Openness – our software is free to use, reuse, remix; no 
intellectual property restrictions. (Hence “We hear Illumina 
is using it…”) 

 



Prospectus for streaming variant detection 

•  Underlying concept is sound and offers many advantages over 
current approaches; 

•  We have proofs of concept implemented; 

•  We know that underlying approach works well in amplification 
situations, as well; 

•  Tuning and math/theory needed! 
 
• …grad students keep on getting poached by Amazon and 

Google.  (This is becoming a serious problem.) 



Raw data
(~10-100 GB) Analysis "Information"

~1 GB

"Information"
"Information"

"Information"
"Information"

Database & 
integration

Compression 
(~2 GB)

Lossy compression can substantially 
reduce data size while retaining 

information needed for later (re)analysis. 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



http://en.wikipedia.org/wiki/JPEG 

Lossy compression 



Raw data
(~10-100 GB) Analysis "Information"

~1 GB

"Information"
"Information"

"Information"
"Information"

Database & 
integration

Compression 
(~2 GB)

Save in cold storage Save for reanalysis, 
investigation.



Data integration? 
Once you have all the data, what do you do? 

 
"Business as usual simply cannot work." 

Looking at millions to billions of genomes. 
 

(David Haussler, 2014) 



Data recipes 
Standardized (versioned, open, remixable, cloud) 

pipelines and protocols for sequence data analysis. 
 
 
 

See: khmer-recipes, khmer-protocols. 
 

Increases buy-in :) 



Training! 
 
 

Lots of training planned at Davis – 
open workshops. 

 
ivory.idyll.org/blog/2014-davis-and-training.html 

 
Increases buy-in x 2! 
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